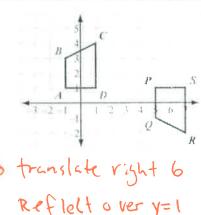

Unit 1 - Transformations

Isometry: A distance preserving map of a geometric figure to another location using a reflection, rotation or translation.

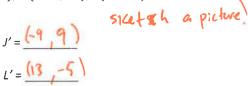
Rotation: Rules are in terms of counter clockwise $R_{90}=(-y,x)$ $R_{180}=(-x,-y)$ $R_{270}=(y,-x)$

Reflection: A transformation about a line that acts as a mirror; x = 0 is a vertical LoR & y = 0 is a horizontal LoR.


- 1) A regular pentagon is centered about the origin and has a vertex at (0, 4). Which transformation maps the pentagon onto itself?
 - A. a reflection across line m.
 - B. a reflection across the x-axis.
 - C. a clockwise rotation of 100° about the origin.
 - D. a clockwise rotation of 144° about the origin.

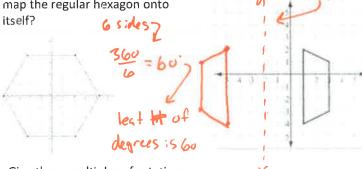
Describe transformations that map ABCD to PQRS.

many answers


are accepted

2) Is a dilation an isometry? Why?

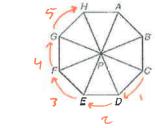
No, loes wt produce a congruent share


- 4) The point Y(-1,7) has been rotated 90° counter clockwise around the origin. Where is the new location of point Y?
- **Reflection:** About y = 3, gives what new vertices? H(12,-16), J(-9,-3), K(-17,12), L(13,11)

- 90(-4,x) -> (-1,7)
 - Degrees of Rotation: What is the minimum degrees of rotation to map the regular hexagon onto itself?
- **Reflection:** About x = -2.

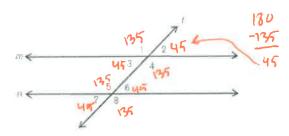
H'= (12,72)

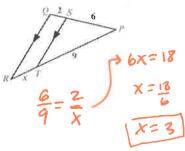
Dilation: A large rectangle is dilated to a smaller one. What is the scale factor & center of



dilation?

- Give three multiples of rotations that map the hexagon onto itself? 60,120,180,240,300,360
- 10) If the result of $(x, y) \rightarrow$ (x-1,y+2) is A'(-5,2), what is the pre-image, or A? Find original
- go bachwards to (-5+1, 2-2) A =(-4,0)
- 11) What *clockwise* rotation of the octagon at right about point P maps point C to point H?


Each Slice is 45

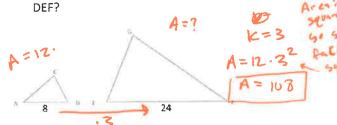


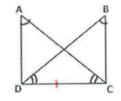
Unit 2 - Triangle Similarity & Congruence

- 1) Angle 5 is alternate interior to angle? 44
- 2) Angle 7 is corresponding to angle? 43
- 3) Angle 8 is vertical to angle? $\angle 5$
- 4) If angle 1 equals 135 degrees, fill in all remaining angles.

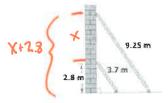
5) Triangle Proportionality: Find x.

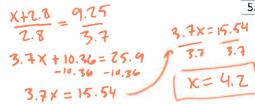
6) Similar Triangles: What is the reflexive angle? Is XZY similar to UZV? If so, how?




7) Midsegment: If M, N, and P are midpoints & perimeter of MPN = 64, find the length of all segments.

8) The sketch below shows 2 similar △'s, ABC and EFG. ABC has an area of 12 units, and it's base, AB, is 8 units long. The base of DEF is 24 units. What is the area of


Prove: $\overline{AC} \cong \overline{BD}$



10) What is the height between the tops of the two ladders?

Statement	Reason		
1. LPAC = LCBD			
2. L BOC = LACD	2.6:ven		
3. ED = CD	3. Reflexive Property		
 Δ CDA ≅ Δ DCB 	4. AAS		
5. AC = BD	5. & LPC+C		

Triangle congruency: SSS, SAS, ASA, AAS, HL. Remember SSA / ASS can't prove congruency. You can't double skip!

by AS

14) Geometric Constructions - Identify each partial or full construction

COPY Angle

bisect Angle

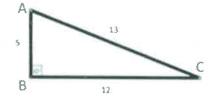
Angle Parchel Lines
GSE GEOMETRY 2 | Page

Unit 3 - Right Triangle Trigonometry

Key Concepts

Finding missing sides use Soh Cah Toa

A missing side can be found using $\sin\theta=\left(\frac{o}{h}\right)$, $\cos\theta=\left(\frac{a}{h}\right)$, or $\tan\theta\left(\frac{o}{a}\right)$ when you know an angle and one side of a right triangle.

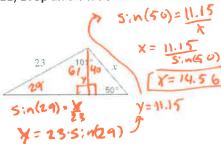

An angle θ can be found by using one of $\sin^{-1}\left(\frac{o}{h}\right)$, $\cos^{-1}\left(\frac{a}{h}\right)$, or $\tan^{-1}\left(\frac{o}{a}\right)$ when two sides are known of a right triange.

Sin $A = \cos B$ when angles A and B are complementary in a right triangle: $\sin A = \cos (90 - A)$

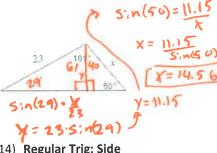
Using the diagram for 1-9. First, find each trig ratio.

3)
$$Tan A = \frac{12}{5}$$

1200 n.


7) True or False: Sin A = Cos (90 - A)Explain. True. because sin 4 = cos B

8) Tan A & Tan B are Recipiocols


olain.

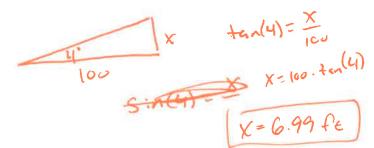
AtBare complements

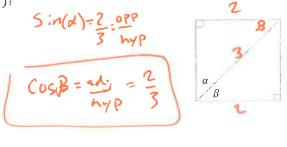
11) Drop an altitude: Solve for x. 10) Angle of Depression & Elevation: If the AoD is 52 degrees, solve for d.

13) Regular Trig: Find the missing side. 14) Regular Trig: Side

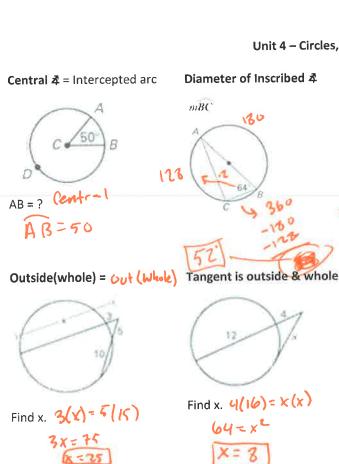
15) Inverse Trig: Find the angle.

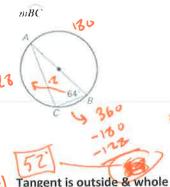
9) In a 45 - 45 - 90 triangle, the ratio

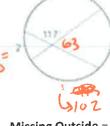

we congruent 12) Area: Solve for total area.

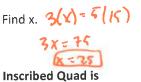

of Sin A = COSA becage bets

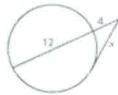
Tan(50)=41


16) A road ascends a hill at an angle of 4° for every 100 feet of road, how many feet does the road ascend? Draw a 4 goes up" diagram.

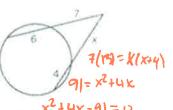

17) In this figure, two right angles and two adjacent angles, $\alpha \& \beta$, are shown. If $\sin(\alpha) = \frac{2}{3}$, what is the value of $\cos(\beta)$?

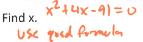

Unit 4 - Circles, Angles & Segments




Missing Outside = Quadratic

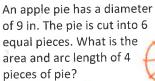
Shared Inscribed 4's are ≅ 12 X+8= 3x-24

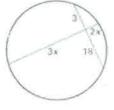



Supplementary

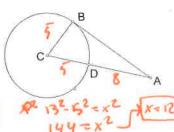
Find x & y.

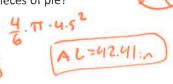
Find x. 4(16) = x(x) 64=x2 **Product of Parts**





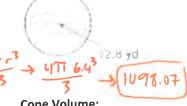
Point of Tangency: AB is tangent to circle C at B.

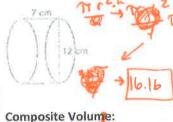

AD=8, CB=5, AB = ?

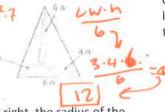


Find x and lengths of chords. 3/18) = 3x.(2x) Nx=4 54= bx

Sphere Volume:

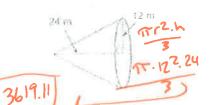

6L=114

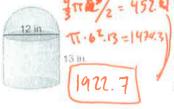

114+ V= 180


Cylinder Volume:

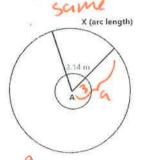
RT Triangle Pyramid volume:

Cavalieri's Principle: Can the cylinder and RTA pyramid at left have the same volume if they have the same height?





ess are not true same



At right, the radius of the smaller circle = 3 m while the radius of the larger circle is 9 m. The arc length intercepted by the small circle is 3.14 m. what is the arc length of the larger circle? s = AL, r = radius

$$\frac{s}{r} = \frac{s}{r}$$

No Cross sectional

$$x = \frac{78.76}{3} = 9.42$$

Identify 2D shapes as 3D Objects: If a circle is rotated, what 3D shape will result?

So hery

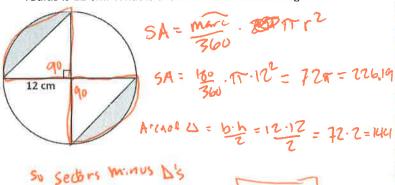
GSE GEOMETRY 4 | Fage

Unit 5 - Algebraic Connections with Geometry

Key Concepts

Distance: $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$, and you can always draw a right triangle on a graph to find Δx and Δy .

Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

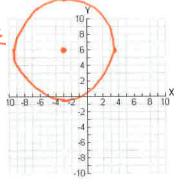

Point Partitioning a Line Segment: $(x,y)=(x_1+\frac{A}{A+B}(\Delta x),y_1+\frac{A}{A+B}(\Delta y))$

Standard Form of a Circle: $(x - h)^2 + (y - h)^2 = r^2$, where the number on the right is ALWAYS squared.

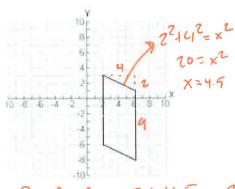
A parallelogram and rhombus have diagonals that bisect. A rectangle and square have diagonals that are congruent.

Partitioning: Find Point Z that partitions the directed line segment \overline{YX} in a ratio of $\frac{5}{2}$, X(-2,6) and Y(8,-7).

Sector Area: 2 diagonals of a circle are shown, and the radius is 12 cm. What is the area of the shaded regions?

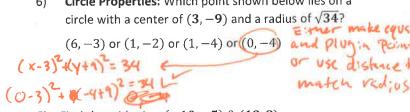


3) Completing the Square: Put into standard form, find center & radius. $4x^2 + 4y^2 - 24x + 48y + 13 = 0$

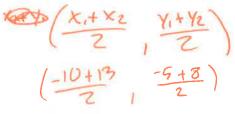

CO100 226.19-144= 82 19

 $\chi^{2}-6\chi+\frac{9}{2}+\chi^{2}+12\chi+\frac{36}{2}=-3.25+\frac{9}{2}+\frac{36}{2}$

 $(x-3)^2 + (y+6)^2 = 41.75$ 1 = (3,-6) (= J41.75 = 6.5 4) Graphing Circles: Now graph the circle from #3.



5) Distance Formula: Find the perimeter and area.



P=9+9+4.5+4.5=27 A=9.4=36

Circle Properties: Which point shown below lies on a

7) Find the midpoint: (-10, -5) & (13, 8)

GSE GEOMETRY 5 | Page
$$\left(\frac{3}{2}, \frac{2}{2}\right) \rightarrow \left(1.5, 1.5\right)$$

Unit 6 - Probability

Key Concepts

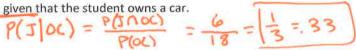
Given $A \cup B$ shade the set

Given $A \cap B$ shade the set

Given \bar{A} or A' shade the set

Given $(A \cup B)'$ shade the set

Given $(A \cap B)'$ shade the se


Addition Rule (aka mutually exclusive): $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Multiplication Rule for Independent Events: $P(A \cap B) = P(A) * P(B)$

Conditional Probability: $P(A \cap B) = P(A) * P(B/A)$ or $P(B|A) = \frac{P(A \cap B)}{P(A)}$

Independent Events do not affect one another while Dependent Events do and means non-replacement.

Find the probability that a randomly selected student will be a junior,

Find the probability that a randomly selected student will own a car,

given that	the st	udent is a senior	. 17	0	
0/ 1	1.	P(OCAS)	-16	2 -	1.
Ploc	(2):	Pres	-20	5	.0
		1000			

For two events B and C, it is known that P(C|B) = 0.65and $P(C \cap B) = .43$. Find P(B).

P(CAB) = P(B) = P(C1B) ->

A sock drawer contains 5 pairs of each color socks: white, green and blue. What is the probability of randomly selecting a pair of blue socks, replacing it, and then randomly selecting a pair of white socks?

Using the letters in the state MISSISSIPPI. Find the probability of picking an S and then a P without replacement. 4 . 2

Car Ownership by Grade -16

	Owns a Car	Does Not Own a Car	٠.
Junior	6	10	1-16
Senior	12	8	-20
TOTAL	18	18	

Randy has 8 pennies, 3 nickels, and 5 dimes in his pocket. If he randomly chooses 2 coins, what is the probability that they are both pennies if he doesn't replace the first

For two events X and Y, it is known that $P(X) = \frac{5}{24}$ and

one?
$$P(P) \cdot P(P|P)$$

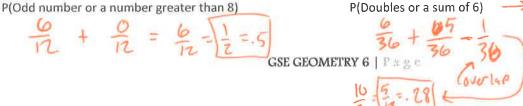
$$\frac{8}{16} \cdot \frac{7}{15} = \frac{56}{240} = \frac{7}{30} = .23$$

7) Determine if the following events are independent.

 $P(X \cap Y) = \frac{1}{8}, \text{ Find } P(Y|X).$ $P(X \cap Y) = \frac{1}{8}, \text{ Find } P(Y|X).$

$$P(A) = \frac{3}{4}, P(B) = \frac{5}{6}, P(A \cap B) = \frac{5}{8}.$$

 $P(A) = \frac{3}{4}, P(B) = \frac{5}{6}, P(A \cap B) = \frac{5}{8}.$


Spanish

A guidance counselor is planning schedules for 200 students. 151 want to take Spanish and 49 want to take Latin. 19 say they want to take both. Display this information on the Venn Diagram.

- What's the probability that a student studies at least one subject? P(St)
- What's the probability that a student studies exactly one subject? (321 50 -> 162 181
- 10) What's the probability that a student studies neither subject? P(SL) 19 095 -> (10) 11) What's the probability that a student studied Spanish if it is known that he, she studies
- P(5/L) = P(50L) = 19 =
- 12) If you roll two die, find:

13) If you roll two die, find:

P(Doubles or a sum of 6)

su yes